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HALO FORMATION AND HOLLOWING IN

RELATIVISTIC ELECTRON BEAMS

I. INTRODUCTION

Many of the analytical 1-5 and computational5 -7 models used to treat

relativistic electron beam propagation in resistive media, such as air,

assume that the radial profile of the beam current density Jb(r) has a

specified shape. The Bennett profile, which has the form,

Jb~r )  b 1 , r 1

nab ab

is often assumed; it is the correct equilibrium for a beam with no plasma

current and an isothermal Maxwellian distribution of perpendicular
-8,9 .

velocities. An envelope equation is often used to describe the

evolution of the scale radius ab as the beam propagates.

If the beam induces a plasma current J p(r), the Bennett profile

defines the equilibrium only if J p(r) has the same profile as the beam. 3

10-18
As revealed in particle simulation code studies, compact Bennett-like

beam current density profiles generally occur when the plasma current is

small or when its profile approximates the local Jb(r). Such codes contain

a model for generating the conductivity a(r) as the beam ionizes the air or

other gas, and since Jp = aEz and the axial electric field Ez usually

varies slowly with r, the plasma current profile tends to follow the

conductivity profile.4'5  If the local conductivity is either much narrower

or broader than the beam, and if the plasma current I is a significantp

fraction of Ib9 large departures from the Bennett profile may occur.12

One widely studied example of this occurs when Ez is large enough to

cause strong avalanche ionization near the beam axis. 10 ,16 - 20  Joyce and

Lampe10 showed thAt this proccss iesUlLs in violent hollowiiag, which was

first observed in particle simulation codes, and later confirmed

experimentally by Ekdahl, et al. 20  These experiments also confirmed

Manuscript approved December 7, 1987
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theoretical predictions that the instability could be eliminated by

limiting the rate of rise of the beam current at the front of the pulse.

Although the hollowing process resembles a convective instability, it is

more correct to state that the beam's original Bennett-like profile ceases

to be an equilibrium, and the beam is seeking a new hollowed equilibrium.

A different process occurs when the conductivity profile is broader

than the beam. Simulations of such beams often evolve to a "core and halo"

equilibrium in which part of the beam is confined to a small region near

the axis while most of the current flows in a halo of much larger radius.
12

Even if the plasma current fraction is small, this process is observed to
12

occur if the transverse beam temperature is too large at injection. Low

pressure FX-1O0 propagation experiments by Ekdahl21 may have been the first

to exhibit the core-halo phenomenon. Cerenkov data taken during

propagation experiments with the RADLAC accelerator sometimes show what
22

appears to be a halo after several meters of propagation. Perhaps the

strongest evidence for core-halo currents comes from recent x-ray probe
23

measurements made during low pressure propagation experiments on ATA.

This paper describes analytical and simulation studies of hollowing

and halo formation processes. Analytical models are developed for

estimating the equilibrium Jb(r) for an isothermal beam, in the presence of

a plasma current with a specified Bennett profile with radius a • A purelyP

analytical solution is obtained by iterating about the vector potential

generated by a Bennett beam with radius a bo. On-axis hollowing is

predicted when Ib + Ip << Ib and a bo is somewhat larger than a . Large

radial wings ("halos") are generated when abo is small compared with ap

In extreme cases with abo << ap and Ib + Ip << I b the beam current profile

J b(r) develops an off-axis minimum. We also show results from a more exact

model which numerically integrates Ampere's equation as described by Sharp,

et al.; 3 it shows qualitatively similar behavior.
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Later portions of this paper describe simulations of these phenomena

using the axisymmetric code SIMMO 10 and the 3-D relativistic simulation

ALA.11-13
code SARLAC. Since the on-axis hollowing process has been widely

studied, most of the results are for cases in which the beam evolves into a

core and halo equilibrium. Halo formation is most common in high current

beams (> 20 kA) because they produce a large return current fraction and

also tend to have broad conductivity profiles because of recombination

5
effects. Halo formation is further enhanced if the beam temperature or

emittance at injection is too large. Mismatched beams of this sort can

produce substantial halos even in cases with modest return current

fractions.

The last section discusses the effect of halo equilibria on the

resistive hose instability. Analytical models 5 and simulations5 - 7 which

assume a Bennett profile for the beam predict a substantial reduction in

hose instability growth as the beam current increases. Simulations with

the SARLAC code generally show hose growth decreasing as Ib increases, but

much more weakly. The SARLAC simulations suggest that the halo is a
12

destabilizing factor, since it contains particles whose individual

betatron frequencies can resonate with low frequency hose modes produced in
5

the expanded head of the beam. Simulations with the VIPER code, which

assumes a Bennett profile for the beam, generally agree well with SARLAC in

cases in which the beam remains Bennett-like. However, VIPER predicts much

less instability growth than does SARLAC in high current or poorly matched

cases which evolve to a core and halo equilibrium. Since halo formation

has a strong effect on hose stability, it deserves more experimental study

in the future.



II. ANALYTIC EQUILIBRIUM MODELS

A. Assumptions and formalism: Lee,2 and Sharp, Lampe and Uhm3. have

discussed isothermal equilibria for ultrarelativistic electron beams

propagating through dense gases. Conventionally, the beam is assumed to be

axisymmetric, and large aspect ratio approximations are made, i.e.,

«i << vz = c for all particles (the "paraxial" approximation),

ab a/az << 1, and (ab/c) a/at << 1. It is convenient to use r, z, and

ct-z as independent coordinates instead of r, z, and t; the quantity

is the distance behind the beam head, and is a constant of the motion if

vz = c. For beam injection into neutral gas, the gas conductivity a(r,L,z)

is due to ionization by the beam itself. It is assumed that a is large

enough to short out radial electric fields within the beam. This is

generally well satisfied, except at the very front of the beam and at large

radii. The fields E and Be are then derived from A, the z-component of

vector potential:

E z -a/a,Z

B0  - 8A/ar,

and A is determined by Ampere's Law,

1 a r A 4 ( p) (2a)
r ar Tr -C (J b ' (2

while J is determined by Ohm's Law,P

J = - a A/( (2b)
p

We use the conventions that Jb(r) and the total beam current Ih are

positive, while J p(r) and the total plasma current Ip are negative. We also

define a (positive constant) return current fraction f = - I p/Ib a net

current In  I + Ip, and a net current fraction f = In/I 1-f.

Ordinarily, 0 < f n 1.

4



Tn our analytic modeling, we shall assume that Jb(r,) is ?-

independent and also use the convenient fiction that J p(r,) is independent

of . In fact, we shall assume a particular form, Eq. (6) below, for

J p(r). Strictly speaking, Eqs. (2) specify Jp and imply that Jp must vary

with , but this variation is often quite slow in the main body of the

beam, and thus it is quite reasonable to assume J is C-independent. 3'5  InP

the particle simulations discussed in Sec. III, Jb(r,), a(r,Q) and Jp (r,)

are all determined self-consistently, and we do not assume Jb() or J ()

to be c-independent.

In our analytic model, the beam is also assumed to have a Maxweilian

distribution of transverse velocities with a uniform temperature T given

by
2 ,3

1 2 1 2  2 (3)
T 2-vmv i Y - me (3

Here v = c6Ot is the transverse thermal velocity of the beam. This

isothermal Maxwellian assumption is reasonable for a beam which has passed

through a thick scattering foil at injection, or which has been scattered
9

while propagating through uniform gas. (In the simulations of Sec. III,

the isothermal Maxwellian distribution of vI is taken only as an initial

condition, and the beam is free to evolve to a different distribution if it

wishes.) The radial force on a beam electron is - e aA/ar; thus in

Maxwell-Boltzmann equilibrium the beam current density Jb(r) must satisfy

Jb(r) = Jbo exp [eA(r)/TJ (4)

where Jbo = Jb(r=O) " Equations (2) and (4) are satisfied if Jp = 0 and

Jb(r) has the Bennett profile defined by (1). In this case, the vector

potential is given by

' -il m d I I llljm



i ( s2 /
A(r) = - - in I + r (5)

c a 2)

B. Iterative Solution for a Non-Bennett Beam: An iterative solution for

Jb(r) can be obtained for an isothermal beam with a Bennett plasma current

profile given by

I (2 -2

Jp (r) = .2 + r (6)
Ftaa
P P

The plasma current profile is assumed to be fixed, and an iteration is

performed which begins with a zeroth iterate Jb (r) in the form of a

Bennett beam profile (1) whose radius abo can be larger or smaller than ap

This is used in Eq. (2a) to calculate the zeroth iterate to the vector

potential,

A(°)(r) 5 b + r2/a 2)- + (7)

This is substituted into (4) to obtain the next iterate to the equilibrium

beam current density,

-2TBr 2fT /T

(r) J bo(l + r2 /a bo2) B + r 2/ap2J B (8)

Here T = el /2c is the Bennett temperature.
B b

It is important to note that abo and T are not independent quantities:

abo must be chosen so that Jbo satisfies the Bennett pinch condition, which

is a necessary but not sufficient condition for equilibrium. (The Bennett

pinch condition guarantees that, in a radially averaged sense, the magnetic

pinch balances the beam pressure, but it does not guarantee that pressure

balance holds at each radial location.) This condition is

6



T = el /2c, (9a)e

where the "effective current" 1,4'5 Ie is defined by

We

I e 2Ib-1 Jo dr 2nr Jb() (r) In(o) (r), (9b)

and for the particular case where Jb(r) and J p(r) are given by Eqs. (1)

and (6),

Ib 1 '1b r 2/abo2  r/a
21 Jdr 2rtrb 2I 2I e 21 2 b - o d n a bo 2 1 + r 2/a bo 2 1 + r 2/a bo 2  1 + r 2/ap 2

o I- f bo /abp _ll bo p ap2(c

bf 2 2 2 2- *
f(abo /a 1 (aa bo /a 

Here I (0)(r) is the net current enclosed within radius r. I isn e

essentially a measure of the pinch-effectiveness of the net current

contained within the beam, whereas In  I + I is th total net current

out to r = - (or to the walls). Thus, Ie > I if abo < a (so that much of

the plasma return current is outside the beam). Ie I b in the limit

abo/ap - 0. Conversely, Ie < In if abo > ap, and IIe b + 2p when a bo/ap

- m. This is because current elements that are entirely within the beam

are twice as effective in determining the average pinch force. Thus one

may regard Eqs. (9) as a relation determining abo as a function of T and f,

or alternatively defining T as a function of abo/a p and f. We note that

increasing T corresponds to reducing abo (in order to minimize the plasma

return current contained within the beam). This is at odds with intuition,

since one usually thinks of increased beam transverse temperature as

leading, in a dynamic sense, to expansion. We note that no equilibrium is

7



possible 1(9) has no solutioni if T > TB or T < TB(1-2f). In the former

case, the beam is too hot to be pinched even by the unshielded beam pinch

force, whereas in the latter case the beam is too cool to support itself

even against the weakened pinch force corresponding to return current flow

entirely in a narrow region on-axis. Figure 1 plots T versus abo/ap for a

series of cases with f = 0.15 and f = 0.8.nn

Eq-uations (8) and (9) give a great deal of detailed information about

the beam profiles Jb(r). This information is summarized in Table I and

will be discussed in this subsection and the next.

In cases with small return currents, the equilibrium is expected to

remain close to the Bennett profile, which is the exact solution if I = 0.P

Figure 2 plots profiles of Jb( 1 )(r)/Jb(1 )(r=O) from (8) using abo/a p = 0.4,

0.7, 1.0, and 1.15, and T calculated from (9). The net current fraction is

fn = 0.8. In all cases, Jb(M(r) is close to the r-4 scaling expected for

a Bennett beam at large radius; no hollowing or halo formation is observed.

Next we consider cases in which the return current is substantial,

beginning with the regime a bo/a p < 1, for which 1-f < T/TB < 1. Using

Eqs. (9), this condition can also he written in the equivalent form

f < f , which indicates directly that in some average sense the beam isn e

narrower than the J (r) profile. Here, Eq. (8) shows that in the centralP

part of the beam, Jb M(r) scales as (1 + r 2/abo 2)-P with p > 2, and thus

(1) -p'
has a steeper fall-off than a Bennett. However, Jb)(r) scales as r

with p' < 4, for large r. Thus, there is a tightly pinched central core

suirouided by an extended lower-density halo. It is interesting to note

that as T increases above (1-f)TB, the core radius decreases (as predicted

above in the discussion of abo), but progressively more of the current is

carried in the halo, whose radius increases. Thus, the half radius

(defined as the radius within which half the beam current flows) typically

increases as a function of T.

8



Figure 3 shows a series of calculations for a case with a strong

plasma return current, f = 0.15. The beam equilibrium for abo/ap = 0.4

exhibits core and halo behavior: Jb(1)(r) drops by three orders of

magnitude between 0 < r/a < 3, but only by a factor of 3 as r/a increases

from 3 to 10.

When abo/ap = 1, it follows that T = TB(1-f) and Eq. (8) shows that

the Bennett profile is recovered. This is shown as the second curve in

Fig. 3.

For abo/a >1, Eq. (8) gives two subcases. If J bo(0) + Jp (0) < 0, the

profile J b(1)(r) is hollowed on--axis, i.e., has a minimum on-axis and a

single maximum somewhere off-axis. This can be seen by differentiating Eq.

(8); extrema are found at r = 0 and at

2 - J (0) + Jb ( )(0)r : -fl a a
Ib + I abo p(10)

One and only one extremum for r2 > 0 exists if and only if -Jp (0) >

J ()(O), which can occur only if the beam is wider than the return current

profile. This situation is shown in the top curve of Fig. 3, where

abo /a p  1.15 and fn = 0.15. If, on the other hand, abo/ap > I but

Jb(0)(O) + J p ( 0 ) > 0, then Jb(1)(r) is flattened near r = 0, but is not

hollowed.

The equilibria shown in Fig. 3 resemble the "generalized Bennett"

equilibria obtained by Benford, Book, and Sudan.2 4  However, their

generalized Bennett Jb(r) is zero on axis for all cases which exhibit on

axis hollowing, and their cases which resemble core/halo profiles have

infinite current density at r = 0.

9



Finally, we consider the occurrence of off-axis hollowing, which is

defined as having a Jb(r) profile that has a maximum on-axis, a minimum

somewhere off-axis, and then a second maximum further out radially. Since

Eq. (8) gives, at most, one off-axis extremum, off-axis hollowing is not

predicted by the first iteration Jb (1)(r). However, a second iteration

does predict off-axis hollowing under conditions where abo /ap is small and

fn is small. We can see this by going part way towards a next iteration.

In equilibrium, the beam satisfies the pressure balance condition

cbz = ar ar (11)

Hollowing occurs when there is a region where Ub /ar > 0. According to

(11), this requires that Be(r) change sign, which is equivalent to

requiring that the enclosed net current In (r) change sign. To first order,

the net current density Jn (1)(r) = Jb(1)(r) + J p(r) is given by (6) and

(8), and the enclosed net current is

In(1)(r) Tb( 1 )(r) + I p(r)

r 2fT / -2T B/T 2 22 r drBr I + 1 + r P/a
ar 2 2a 1 iaii1+ r2/ap

0 p

(12)

The integral in (12) can be evaluated numerically.

Figure 4 plots the enclosed currents I b(1)(r), I (r) and I (1)(r) forb p n

a case with abo/ap = 0.8 and fn = 0.15. The enclosed net current remains

positive everywhere, so this case is expected to show core and halo

behavior. In Fig. 5, abo/ap has been reduced to 0.4, and there is a

significant region where I n(1)(r) is negative. This example would thus

show off-axis hollowing in the next iteration.

10



C. Numerical Integration of Ampere's Equation: The iterative procedure

offers considerable insight into the hollowing and halo formation

processes, but one or two iterations does not necessarily yield a

quantitatively accurate calculation of Jb(r) when Jb(r) is very different

from the Bennett profile which is the starting point for the iteration. In

the present section we continue to assume that J p(r) has the Bennett shape

(6), but we calculate Jb(r) dircctly by numerically integrating Ampere's

law (2a) and the Boltzmann equilibrium condition (4) together. This method

was employed by Sharp, et al.,3 to construct equilibria for hose

instability calculations. Values for ap, J p(0), ib(0) and T are chosen,

and (2a) is integrated numerically from r = 0 to r = -, using (4) to

generate Jb(r). We then calculate Ib by integrating Jb(r):M
I-b 2n dr r Jb(r) (13)

0

and f I p /Ib or fn 1-f are thus specified. The procedure can be

repeated, adjusting the initial value of Jb(0)/ip(0), to converge to a

desired value of f, or alternatively to a desired ratio of a to someP

characteristic beam radius.

Figures 6-8 show examples in which f n < T/TB9 and thus the core of the

beam has a narrower profile than J p(r) and beam profiles of core/halo type

are expected. In Fig. 6, fn 0.47 and T/TB = 0.6; because the return

current is not too large Jb(r) is close to the Bennett profile, with a weak

halo. In Fig. 7, T/TB = 0.2 and there is a stronger return current,

f = 0.18. This beam more clearly exhibits core and halo behavior, asn

expected from the simple iterative theory of Sec. IB. However, the

present solution (in contrast to the more approximate result shown in

Fig. 2) shows that the halo does not extend indefinitely, but rather Jb(r)

1I



falls off rapidly for r > 2 a . This type of behavior is seen in the

simulations reported in Sec. III. In Fig. 8, T/TB = 0.1 and the return

current is still stronger, fn = 0.083. This example exhibits off-axis

hollowing. Figure 9 shows a case in which there is strong return current,

fn = 0.08, and T/TB = 0.05 < fn" Thus Jp(r) has a narrower profile than

the beam, and in fact -J p(0) > Jb(0). The beam exhibits on-axis hollowing,

as expected.

12



III. PARTICLE SIMULATION RESULTS

A. Model Descriptions: Particle simulations have been widely used to

study relativistic electrun beam propagation.9 -1 7 Most of the results

presented here were obtained with SARLAC, an ultrarelativistic 3-D particle

simulation. 11-13 It differs from conventional plasma simulations in that

vI << vz = c, so particles remain at the same distance from the beam

head, and field and conductivity equations are integrated in . The field

solver is based on the Lee field equations5 '25 for a relativistic, paraxial

beam. The conductivity equations employ a variable temperature model2 6 and

include beam impact ionization, avalanche, and recombination. The beam is

injected with a Bennett profile with radius a and a constant temperatureo

T . The SARLAC code is described in more detail elsewhere. 11,13
0

Results on on-axis hollowing were obtained with SIMMO, an axisymmetric

10
particle simulation. Except for the axisymmetric assumption, the code is

similar to SARLAC.

B. Overview of SARLAC Simulations: Eight simulations were performed with

the SARLAC code using various values of beam current and beam transverse

temperature. These simulations are described in Table II. The high

current (> 100 kA) cases produced large return currents and broad

conductivity profiles (due to recombination effects and beam tapering). In

agreement with the theory presented in Sec. II, these cases show core and

halo behavior when the initial transverse temperature T is large, i.e.,
0

fm =To/T B > f n (14)

In simulation parlance, fm defined in (14) is callel the "matching current

fraction" -- the beam as injected would be in a Bennett-like equilibrium if

the net current fraction fn turned out to be equal to fm . If the "matching

13



current" is larger than the self-consistently determined net current, that

means that the beam is "overpressured" - i.e., too hot - at injection.

Halos were produced in a 10 kA case when fm was very large, even though the

return current fraction was modest. In one extreme case with Ib = 500 kA,

off-axis hollowing was observed.

To quantify the degree of halo formation, the radius a /2 enclosing

half of the beam current was compared with acore' a Bennett radius fit to

the beam core. For a Bennett-like beam, a1/2  a core' while a1,/2 > 2 aB

for a beam with a strong halo. The radius measurements were taken at

= 80 a and z = 240 a where a was the Bennett radius of the injected

beam.

C. Bennett-like Examples: Case 1 is a 10 kA beam with fm = 0.5, a

temperature close to that required for a well-matched injection. Since

Ip/I b = 0.5 for this case, the beam should remain Bennett-like. Figure 10

plots Jb(r) and Jn(r) = Jb(r) + J p(r) at = 80 cm and z = 240 cm. The

profiles are similar in shape and there is no evidence for a halo. Figure

11 compares Jb(r) with a Bennett fit; the fit is excellent even out to

large radii where Jb(r) has dropped by several orders of magnitude. Figure

12 plots the pinch force per beam electron Fr (r) for this case. It shows

the expected smooth behavior for a Bennett-like beam.

Figure 13 plots the x and y positions of a subset of individual

simulation particles vs after the beam has propagated to z = 320 cm. The

beam flares at the head because it takes time for the net current and pinch

force to build up. 4 The beam is clearly well-pinched, and hose instability

distortions are barely visible.

14



A 100 kA beam typically produces a broad conductivity profile and a

small net current (In - 0.1 - 0.2 Ib), conditions which typically lead to a

core/halo equilibrium. SARLAC simulations of 100 kA beams reached Bennett-

like equilibria only when the head of the beam was expanded and cooled

prior to injection into the gas, in order to improve the match throughout

the beam. In cases 6 and 7, the beam was injected with a tapered radius

a( ,z=O) 112 a , (15)

but the emittance at injection, which is proportional to

1/2
a( ,O)(f m( ,0)) , was constant as a function of . For fm = 0.2 (case

7), the beam remains Bennett-like, as shown in Fig. 14. For f = 0.4 (casem

6), modest departures (core/halo) from the initial Bennett profile occur.

D. Core and Halo Examples: Case 4 is a 100 kA beam with f = 0.4, am

relatively high temperature for a beam with such a small net current

fraction. Figure 15 plots Jb(r) and Jn(r), showing the presence of a halo

between r 5 cm and r = 15 cm. The beam is well represented by a Bennett

out to r 5 cm. Since a1/2 > 3acore (Table II), this may be considered a

strong halo case. The core, whose radius a = 1.1 a = 3.3 cm, carriescore o

only about 15% of the total current. Most of the beam is contained in the

halo. The net current density J n(r) is actually negative just inside the

halo. This leads to a local off-axis minimum in IFr(r) , as seen in

Fig. 16. This tends to push particles from the core to the halo. The halo

is clearly seen in the particle plots shown in Fig. 17, along with the high

dcnsity core. Consistent with Fig. 15, the halo has a relatively well-

defined edge. Codes such as VIPER, which impose a Bennett profile on the

beam and use an envelope equation to estimate the beam radius, predict that
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the beam radius should taper back from the beam head due to the gradual

build-up of the effective current defined in (9). The behavior seen in

Fig. 17 is much different. The implications of this for hose instability

are discussed in Sec. IV.

Strong halo formation of a similar nature is seen in Case 3

(Ib = 50 kA, fm = 0.4). In Case 5 (1 b = 100 kA) fm was reduced from 0.4 to

0.2 in order to produce a better match at injection; only mild halo

formation was observed in this case.

We have also observed halo formation in lower current beams when the

initial temperature or emittance is poorly matched. Case 2 is such an

example; it is identical to the 10 kA Case 1 except that f = 1.5. As seenm

in Fig. 18, a halo forms at r = 2 cm, and the Bennett core carries only

about 25% of the total current. From Table II, a11 2/acore = 2.5 for this

case. We believe that this case is qualitatively different from the high-

current cases discussed in this paper; there is not enough plasma return

current to account for the halo through the mechanism discussed in Sec. II.

In this case, the evolution to a core/halo equilibrium appears to be due to

a strong departure from Maxwell-Boltzmann equilibrium. This beam is

injected with a transverse pressure that far exceeds the pinch force, and

the resulting non-adiabatic behavior (large-amplitude bounces) heats some

electrons far more than others and introduces structure in phase space. We

believe that this type of behavior may be a significant feature of some

beam propagation experiments, and intend to explore it further in future

work.

E. Off-Axis Hollowing Cases: Figure 8 indicates that off-axis hollowing

can occur if f = I /I is sufficiently small. Small f is associated withn n b n

very high beam current. Case 8 is similar to Case 2 but with Ib = 500 kA
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and f = 0.2. A plot of Jb(r) at z = 1200 cm and = 480 cm (Fig. 19)mb

reveals an off-axis minimum at r 40 cm. Again the core contains only a

small fraction of the current. An off-axis minimum is not observable in

plots of the x and y positions of simulation particles, so Fig. 20 also

plots the radial position r. of simulation particles at z = 200 a = 12001 0

cm. The core has a relatively sharp edge, followed by a gap in particles

corresponding to the off-axis minimum.

The conditions to produce off-axis hollowing by a beam injected into

an initially neutral gas are well beyond present technology. However, our

axisymmetric simulations using the SIMMO particle code indicate that off-

axis hollowing can occur when a lower current beam is injected into a

highly conducting channel, which carries a current In - 0.1 1b and is

somewhat broader than the beam. Such conditions can occur when a beam is

injected into a laser-guided electric dischargc. Keeley 2 7 has observed

similar behavior using a fluid beam simulation code.

F. On-Axis Hollowing: As seen in previous theoretical and experimental

studies, on-axis hollowing usually causes violent disruption of the

propagating beam. 10 '15 - 18 The disruptive instability is driven by

enhancement of avalanche ionization near the beam axis. An example of on-

axis hollowing which remains quiescent and near equilibrium is shown

in Fig. 21. The simulation was performed with the SIMMO code for

a 10 kA beam propagating in a reduced density channel with density

p(r=O) = 0.1 atm. The channel radius a is twice the beam radius, andc

p(r >> a c) approaches 1 atm. The surface plot of Jb(r,), at z = 800 cm,

exhibits the mild on-axis hollowing. Figure 22 plots the radius

a11 2( , z). Although some oscillations are present, the beam propagates

without disruption.
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IV. HOSE INSTABILITY SIMULATIONS

A. Introduction: The resistive hose instability can seriously disrupt

propagation of relativistic electron beams. 2,3,5-7 However, it is

sometimes possible to avoid severe disruption by taking advantage of the

convective nature of the instability. An initial excitation convects

backward in the beam, growing as in convects. Thus the hose amplitude, at

a given point in the beam, initially grows and then reaches a maximum and

subsequently decays as the disturbance convects past; this is known as

convective saturation. The linear theory of the instability has been

developed in Refs. 2, 3 and 5.

SARLAC was primarily intended for studying this instability. It is

less restrictive than older phenomenological codes such as VIPER,
5

EMPULSE,6 and PHLAP 7 in three ways: First, SARLAC can follow the

instability into the large-amplitude regime, whereas the older codes

linearize in hose amplitude (compared to beam radius). Second, SARLAC

follows exact particle trajectories, whereas the older codes use the spread

mass or multicomponent
3 beam dynamics models. However, careful studies 5

have shown that these models are quite accurate, at least for small

amplitude hose. Third, the older codes impose a Bennett radial profile on

the beam, but SARLAC allows the beam profile Jb(r) to change its shape

self-consistently. For our purposes here, this is the most important

difference between SARLAC and the older codes. In this section, we examine

the hose instability behavior of the cases described in the previous

section and compare the SARLAC results with those obtained from VIPER.

B. Bennett-like Cases: For cases in which the beam remains Bennett-like,

we expect VIPER and SARLAC to predict comparable hose growth in the linear

regime. Figure 23 plots the displacement R(z) of the beam centroid for
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Case 1, which is a Bennett-like 10 kA beam. SARLAC results are shown for

= 40, 80, and 160 cm, and a VIPER result for = 160 cm. (The VIPER

amplitudes are normalized to X° = 10- 2 cm, the amplitude of the initial

SARLAC perturbation). As expected, the two codes are in substantial

agreement. This is also shown in line 1 of Table III, which compares the

SARLAC and VIPER values for ln(X/X ) evaluated at C = 80 a and

z < 400 a . Once the beam propagates a short distance, the radius

a/1 1 2 (Q in the region of strong hose growth is almost constant. This is

seen in Fig. 24.

C. Core and Halo Examples: In all cases where there is a halo, SARLAC

predicts more hose growth than VIPER. In Case 5, only mild halo formation

is seen in the SARLAC simulation, and SARLAC shows 5.9 e-foldings of

growth, a mild enhancement compared to the 4.4 e-foldings shown by VIPER.

The high current Case 4 exhibits strong halo formation. Figure 25 plots

X(z) for this case. The three SARLAC curves at = 120, 240, and 360 cm

show substantial instability growth, which is also apparent in the particle

plots shown in Fig. 26. IThis plot is at z = 1200 cm which was the end of

the simulation run. At z = 720 cm (Fig. 17), the beam does not yet exhibit

large amplitude hose.j However, the normalized amplitude from VIPER at

= 360 cm shows very little growth. Indeed, Table III shows 3.9 e-folds

of growth for SARLAC, but only 0.8 e-folds for VIPER. Case 2, a 10 kA

beam which exhibits strong halo formation, also shows a factoi of 2 more

instability e-foldings with SARLAC than with VIPER.

D. Discussion: It appears to be generally true that the presence of a

halo exacerbates hose instability, as compared to the same case treated

with a model that artificially imposes a Bennett profile. We believe this

19



is true because Jb(r,) is nearly constant in both r and within the halos

seen in SARLAC simulations, and thus, there is much less variation in

betatron frequency among beam particles, as compared to beams with Bennett

profiles. It has been known for many years2'3 that betatron frequency

spread greatly reduces the hose growth rate and leads to convective

saturation. Particularly in the case of high-current beams (Ib >> 10 kA),

envelope code simulations (which impose a Bennett profile) typically show a

gradual tapering of the half-radius al/2 (c), as a function of , as

illustrated in the VIPER simulation of Case 4 in Fig. 27. This tapering

leads to betatron-frequency variation, and is a stabilizing feature. The

SARLAC simulation of the same case (Fig. 27) shows much less variation in

a1/2 within the beam body.

It should be noted that the point of Table III is to compare SARLAC to

VIPER hose growth for each individual case. The comparison of hose growth

among different cases is not meaningful, without considering many factors

that have not been discussed here and that are different for the various

cases, e.g., propagation distances z must be scaled to the betatron

wavelength, locations . (relative to the beam head) must be scaled to

"dipole decay lengths" wa1 /2 2 /2c, and the variation a1 /2(C,) must be taken

into account.
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V. CONCLUSIONS

Particle simulations of propagating relativistic electron beams with

large return current fractions often exhibit large departures from the

compact Bennett or Gaussian profiles usually assumed in theoretical

calculations. Beams with narrow return current profiles may show on-axis

hollowing, while those with broad return current profiles may form a core

and halo or an off-axis minimum in Jb(r). All of these features can be

reproduced in analytic models which calculate an equilibrium Jb(r)

compatible with Ampere's equation.

Beams which evolve to highly non-Bennett radial profiles may be

strongly destabilized. A beam with a narrow conductivity profile and an

equilibrium with an on-axis minimum is likely to be disrupted I)y the

axisymmetric hollowing instability. High return current beams with broad

conductivity profiles may develop a halo which can strongly enhance hose

instability disruption. Since most of the beam usually resides in the halo

in these cases, the presence of a small current in a tight core may be of

little consequence. The important role of the J1 (r) profile in determining

beam stability may warrant more careful experimental examination of the

phenomena.
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Table I. A summary of the analytic model for beam equilibrium.

f a bo/a p T/T B Form of profile J b r) I

0 Bennett

----------------------------------------------------------------

close to 0 any value close to 1 Bennett-like

> 1 no solution

moderate < 1 1-f < T/T B < 1 core/halo

----------------------------------------------------------------

close to 1 < 1 1-f < T/T B < 1 off-axis hollowed

any value 1 1-f Bennett

> a pl a bo > 1 1-2f < (/ 1-f hollowed on axis

----------------------------------------------------------------

< a 2 /a o2  > 1 1-2f < T/T B< 1-f flattened on axis

< 11-2f no solution
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Table II. This table summarizes the initial conditions and the type of

equilibrium attained in eight SARLAC simulations. In all cases, the beam

electrons initially have relativistic factor y = 100, the gas is air at

standard temperature and pressure, the simulation region is terminated by a

perfectly conducting wall at r = 81 a0 , and the beam current Ib(Q) rises to

its full value over a rise length Cr = 120 a . Those cases designated

"pencil beam" are injected with uniform emittance and radius a0 , while

those designated "tapered" are injected with uniform emittance, but with a

tapered radius a(Q)/a °  (r/) 1 /2 , and T() - (a(Q) - 112 . is the

"half-radius" of the beam, while a is a Bennett radius fit to thecore

central part of the beam. The quantities fn' a1/2 and acore are evaluated

at C = 80 a and z = 240 ao . The matching current fraction fm is defined

in (14).

Case Ib(kA) a (cm) fm fn a 12/a a core/ao Description

1 10 1 (pencil) 0.5 0.53 1.2 1.1 Bennett-like

2 10 1 (pencil) 1.5 0.58 3.5 1.4 Strong halo

3 50 3 (pencil) 0.4 0.21 3.1 1.5 Strong halo

4 100 3 (pencil) 0.4 0.22 3.5 1.1 Strong halo

5 100 3 (pencil) 0.2 0.16 1.6 0.9 Moderate halo

6 100 3 (tapered) 0.4 0.17 2.4 1.7 Moderate halo

7 100 3 (tapered) 0.2 0.13 1.5 1.8 Bennett-like

8 500 6 (pencil) 0.2 0.04 3.2 1.2 off-axis hollowed
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Table III. Hose instability growth, for four of the cases described in Table

2. R is the largest hose amplitude seem at C = 80 a for z < 400 ao , while

x is the initial hose amplitude.

SARLAC VIPER
Case Ib(kA) Description ln(X/X ) ln(X/X )

1 10 Bennett-like 5.4 4.9

2 10 Strong halo 0.6 0.3

4 100 Strong halo 3.9 0.8

5 100 Moderate halo 5.9 4.4
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Fig. 1 Equilibrium value of T/TB  versus the nominal beam radius ratio

abo/a . The solid line is for fn = 0.8, and the dashed line is for

fn = 0.15. The asterisks correspond to the cases plotted in Figs.

2 and 3.
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Fig. 2 Equilibrium beam current density Jb(1)(r) calculated from (8) for a

beam with net current fraction f :0.8. The curves are for
n

nominal beam radius abo = 0.4, 0.7, 1.0, and 1.15 (normalized to

the plasma current radius a ). The radial profiles are all

Benne tt-like.
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Fig. 3 Equilibrium J b 1(r) for a beam with f n= 0.15. For a bo/a p 0.4

and 0.7, the current density tails off slowly with r for r >> a bo'

thus exhibiting core and halo behavior. For a bo/aP p 1.15, the

beam exhibits on-axis hollowing.
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Fig. 5 Enclosed currents I b (1 )(r), I p(r), and I n 1 )(r) for a case similar

to Fig. 4 but with a o/p =0.4. Since I (1)()rvsesina

n/a p=2, this case exhibits off-axis hollowing.
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Fig. 6 Equilibrium beam current density J 1 (r) as obtained by direct

integration of Ampere's law and the Boltzmann equilibrium

condition. Also shown are J p(r), which (by fiat) has a Bennett

profile with radius a pand J Ben (r), a Bennett profile fitted to

Sb (r) in the vicinity of r = 0. For this case, T/T B=0.6,

1-f =0.47, and there is a weak halo, but overall JBen(r) is a good

approximation to J b(r).
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Fig. 9 Current densities Jb(r), Jp (r) and JBen(r) for a case with

T/T B = 0.1 and 1-f - 0.083. The beam current density for this case

is broader than the plasma current density, and the equilibrium

is hollowed on-axis. Jb(r) is calculated by the same method as

Fig. 6.
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Fig. 10 Current densities J b(r) (solid line) and in (r) J p (r) + J b(r)

(dashed line) taken from a SARLAC simulation of Case 1 at = 8(0 cm

and z - 240 cm. There is no evidence for a halo oi- hollowing in

this well-matched (f 0.5) 10 kA case. The data is taken along

the positive ,<-axis (8 0). and current densi ties ate in

s ta tamps/cm'
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Fig. 11 Comparison of J(r) (solid) and JBen(r) (dashed) for the SARLAC

simulation (Case 1) shown in Fig. 10. JBen is a Bennett profile

fit to the current density data. The Bennett profile provides an

excellent fit for this case.
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Fig. 12 Plot of the pinch force F r(r) =-dA(r)/dr for the SARLAC simulation

(Case 1) shown in Fig. 10. The small region where F r> 0 is due to

hose-induced displacement in the ±x-direction.
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Fig. 13 Plot of the position xi and yi of a subset of simulation particles

versus for the 10 kA simulation (Case 1) shown in Figs. 10-12.

At z = 240 cm, the beam does not show evidence for hollowing, halo

formation, or large amplitude hose motion.
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Fig. 14 Comparison of J b(r) (solid curve) and the Bennett fit J Be(1)

(dashed curve) from a 100 kA SARLAC simulation with a constant

emittance but tapered radius at injection (Case 7). At z =720 cm

and 240 cm, the beam profile remains Bennett-like.
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Fig. 15 Plot of J b(r) (solid curve) and J n(r) (dashed curve) from a SARLAC

simulation with 1I = 100 kA and fm 0.4 (Case 4). At z =720 cm

and = 240 cm, the beam forms a halo extending from 5 to 15 cm

from the axis.
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Fig. 16 Plot of pinch force F r (r) vs. r for the SARLAC simulation (Case 4)

shown in Fig. 15. The halo forms in the region near the off-axis

local minimum in IF r (r)j.
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Fig. 17 Plot of simulation particle positions x. and y. from the core and

halo example (Case 4) discussed above, taken at z = 720 cm. The

dense core is clearly seen, and the sharp edge of the halo at 10-15

cm from the axis is also apparent.
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Fig. 18 An example of core and halo behavior in a poorly matched (fm 1.5)

10 kA beam. The plot of Jb(r) (solid curve) and the Bennett fit

JBen(r) (dashed curve) are from Case 2 at z = 240 cm and

= 80 cm. Most of the current flows in the halo.
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Fig. 19 An example of off-axis hollowing produced by a SARLAC simulation of

a 500 kA beam (Case 8). The plots of J b(r) (solid curN' :) and the

Bennett fit J Ben (r) (dashed curve) are taken along the spoke at

0 = 7n/8 which was the direction of the local maximum in J b(r,O).

The plot is for =480 cm and z = 1200 cm.
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Fig. 20 Particle position plots at z = 1200 ot the radius r.i (x.i +

Yi ) (top of frame) and y position yi (bottom frame) for the

off-axis hollowed SARLAC simulation (Case 8) described in Fig. 19.

A gap in particles is apparent in the r. plot at the top edge of

!1

the denser band at 20-25 cm from the axis. Geometrical factors

obscure the gap when viewed from the side (bottom frame).
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Fig. 23 Beam displacement R(z) taken from simulations of a well-matched

10 kA beam (Case 1). The three SARLAC curves are for = 40, 80,

and 160 cm, and the VIPER curve is , = 160 cm. As expected for

this Bennett-like example, the SARLAC hose instability displacement

at = 160 cm agrees well with the VIPER result.
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Fig. 24 Beam radius a1 /2 () for z = 0, 100, and 300 cm for the SARLAC

simulation (Case 1) shown in Fig. 23. Except in the expanded beam

head, the beam radius remains almost constant.
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Fig. 25 Beam displacement X(z) at ? 120, 240, and 360 cm taken from a

SARLAC simulation of a 100 kA beam (Case 4) which exhibits core and

halo behavior. Also shown is the result from a VIPER simulation at

= 360 cm. In this comparison, the SARLAC model predicts much

more hose growth than does VIPER.
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Fig. 26 Simulation particle positions for the core and halo example (Case

4) taken at z = 1200 cm. The hose instability distortions of the

beam core are clearly observable. (In Fig. 17, which was taken

from the same simulation at a shorter propagation distance, the

instability had not yet grown into the large amplitude regime).
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Fig. 27 Beam radius a1/2(c) for the core and halo simulation (Case 4) shown

in Figs. 25 and 26. At z = 720 cm, the half current radius from

the SARLAC code quickly teaches a nearly constant value of

10-12 cm, although the core radius is much smaller (- a° = 3 cm).

The VIPER code at z = 720 cm predicts a beam radius which tapers

significantly.
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